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Distributed optimization

A network of agents cooperatively solve a global
optimization problem, where

@ each agent i has a local private objective f;(x)
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Distributed optimization

A network of agents cooperatively solve a global min f(z) == 1 Zfi(m)
optimization problem, where zERP L
@ each agent i has a local private objective f;(x) 1 2

o all agents collaborate together to find the
solution to minimize f(z):= 3" | fi(x)

~n
@ agents exchange information through the
underlying communication network G 4 3 )
ymng y

m Distributed optimization summarizes many popular machine learning models,
e.g., deep learning and federated learning [Dean et al, NeurlPS, 2012]

m Distributed algorithms outperform centralized algorithms in some applications,
e.g., training neural networks [Lian et al, NeurlPS, 2017]
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Motivation

Existing algorithms
Continuous- and discrete-time distributed algorithms
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Motivation

Existing algorithms
Continuous- and discrete-time distributed algorithms

Existing result

A standard assumption for proving exponential/linear convergence of existing

distributed algorithms is
strong convexity of the cost functions

Question

Could strong convexity be relaxed?
For example, quadratic functions may be not strongly convex.

Answer in our paper
Yes, it can be relaxed by the Polyak—tojasiewicz condition.
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Polyak—t.ojasiewicz condition

Polyak—tojasiewicz (P-t.) condition
The function f(x) satisfies the P—t condition with constant v > 0 if
IVf@)I* > v(f(z) = f*), Yz €RP.
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Polyak—tojasiewicz (P-t.) condition
The function f(x) satisfies the P—t condition with constant v > 0 if
IVf@)I* > v(f(z) = f*), Yz €RP.

e Examples: f(z) = ||Az||? and f(z) = 2% + 3sin?(z).
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Polyak—t.ojasiewicz condition

Polyak—tojasiewicz (P-t.) condition
The function f(x) satisfies the P—t condition with constant v > 0 if
IVf@)II* > v(f(2) = f7), Yz € RP.

Examples: f(x) = ||Az||?> and f(z) = 22 + 3sin?(z).
P—-t does not imply convexity.
P—-t implies that every stationary point is a global minimizer.

Every strongly convex function satisfies P—t.

It is difficult to verify P—t in general.
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Polyak—t.ojasiewicz condition

Polyak—tojasiewicz (P-t.) condition
The function f(x) satisfies the P—t condition with constant v > 0 if
IVf@)II* > v(f(2) = f7), Yz € RP.

Examples: f(x) = ||Az||?> and f(z) = 22 + 3sin?(z).
P—-t does not imply convexity.

°
°
o P-t implies that every stationary point is a global minimizer.
@ Every strongly convex function satisfies P—t.

°

It is difficult to verify P—t in general.

One special case

If g: R? — R is a strongly convex function and A € RP*? is a matrix, then f(z) = g(Ax)
satisfies the P—t condition.
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Derivation of primal—dual gradient descent algorithm

rERP

min f(z) := %Zfl(x)
i=1
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Derivation of primal—dual gradient descent algorithm
min f(x) := Zfl(xz)
i=1

xeR"P

TERP

1 . :
min f(z) = — Zfi(x) is equivalent to
i subject to L'/%x = 0,,,
where & = col(z1,...,2,) and L = L ® I, with L being the Laplacian.
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Derivation of primal—dual gradient descent algorithm
min f(x) := Zfl(xz)
i=1

xeR"P

TERP

1o : :
min f(z) = — Zfi(x) is equivalent to
i subject to L'/%x = 0,,,
where & = col(z1,...,2,) and L = L ® I, with L being the Laplacian.
Associated augmented Lagrangian:
_ 7 QT Tr1/2
A(z,u) = f(x) + 5T Lz + pu' Lz,

where u € R™ is the dual variable, «, 3 > 0 are parameters.

X.L.Yietal | CDC2020 | Distributed Primal-Dual Gradient Descent Algorithm 4/13



Derivation of primal—dual gradient descent algorithm

Lo nin_ f(x) Zfz ()
miRn flz):=— Zfi(x) is equivalent to
e = subject to L1/2m = 0,

where & = col(z1,...,2,) and L = L ® I, with L being the Laplacian.
Associated augmented Lagrangian:
_ 7 o T Tr1/2
A(z,u) = f(x) + Pl Lz + pu' Lz,
where u € R™ is the dual variable, «, 3 > 0 are parameters.
Minimize A(x,u) with a primal-dual algorithm:

0A(xy, w ~
Tyl =Tp — n# = xp — n(aLx, + BLY?uy, + Vi(z)),
O0A(xy,
Ukl =UL + % = uy 4,,,7&1;1/2:1:]67

where > 0 is a fixed stepsize.
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Lo nin_ f(x) Zfz ()
miRn flz):=— Zfi(x) is equivalent to
e = subject to L1/2m = 0,

where & = col(z1,...,2,) and L = L ® I, with L being the Laplacian.
Associated augmented Lagrangian:
_ 7 o T Tr1/2
A(z,u) = f(x) + Pl Lz + pu' Lz,
where u € R™ is the dual variable, «, 3 > 0 are parameters.
Minimize A(x,u) with a primal-dual algorithm:

0A(xy, w ~
Tyl =Tp — n# = xp — n(aLx, + BLY?uy, + Vi(z)),
O0A(xy,
Ukl =UL + % = uy 4,,,7&]_’11/2:1:]67

where > 0 is a fixed stepsize.
With vj, = L'/?uy, this algorithm can be rewritten as
X1 =xp — n(aLxy + fop + V f(xr)),
Vi1 =k + nBLxy.
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Distributed primal—dual gradient descent algorithm
w1 = — n(alxy + Bor + V f(xr)),
V41 =k + nBLxy.

Distributed Primal-Dual Gradient Descent Algorithm
T8 ol = 8B — 77<0é ijl Lz + Bvik + Vfi($i,k)>7

n
Uikt = Uik + 78 Y g LiiTik-
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Distributed primal—dual gradient descent algorithm

Tis1 =z, — n(aLzy + Boy, + Vf(zy)),
Vg+1 =Vx + nBLxg.

Distributed Primal-Dual Gradient Descent Algorithm
T8 ol = 8B — 77<0é ijl Lz + Bvik + Vfi($i,k)>7

n
Uikt = Uik + 78 Y g LiiTik-

This algorithm is single-loop and communicates only one variable.
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Linear convergence to global optima

Distributed Primal-Dual Gradient Descent Algorithm
n
Tikt1 = Tik — Tl(a Zj:1 Lijwj . + Poik + Vfi(xi,k)>7
n
Vik+1 = Uik + 18 ijl Lijajk.

Theorem

If each f;(x) is smooth (V f;(z) is Lipschitz continuous) and f(xz) satisfies P—t, then
the primal—-dual gradient descent algorithm linearly converges to a global optimum:
there exists p € (0,1) such that

ST TP+ f@) = S = 0",

Optimization

Consensus
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Linear convergence to global optima

Distributed Primal-Dual Gradient Descent Algorithm
n
Tikt1 = Tik — Tl(a Zj:1 Lijwj . + Poik + Vfi(xi,k)>7
n
Vik+1 = Uik + 18 ijl Lijajk.

Theorem

If each f;(x) is smooth (V f;(z) is Lipschitz continuous) and f(xz) satisfies P—t, then
the primal—-dual gradient descent algorithm linearly converges to a global optimum:
there exists p € (0,1) such that

ST TP+ f@) = S = 0",

Consensus Optimization

Remark
@ Linear convergence is achieved without strong convexity, even without convexity.
@ Parameters «, 8, n do not have to depend on v.
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Linear convergence to global optima
P—t condition: ||V f(z)|] > v(f(z) — f*), Vz € RP.

Theorem
If each f;(z) is smooth and f(z) satisfies P—t, there exists p € (0,1) such that

%Z:Zl |zix — Zx|® + f(@x) — f* = O(").

Proof sketch:
Consider the nonnegative potential fuznction:
1
—I—scTK(v + = O)—I—n ) — 1),
Qrgr T Tk kE 59 (f(@r) = f7)

where ||£13k||%< = Z;"L:l ||l‘1,}.C — 3_7;.3”2 and g,g = COI(Vfl(i‘k), ey an(a_%))

1 1 1
Vi = §||93k”%< + §H’Ul~c + ngH
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1 1 1 2 1
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Linear convergence to global optima
P—t condition: ||V f(z)|] > v(f(z) — f*), Vz € RP.

Theorem
If each f;(z) is smooth and f(z) satisfies P—t, there exists p € (0,1) such that

%Z:Zl |zix — Zx|® + f(@x) — f* = O(").

Proof sketch:
Consider the nonnegative potential function:

2 1
+sc;K<vk + =

0 — _px
arox G90) + (@) — ),
where ||a:k\|%< = Z?:l ||$i,k — j]fHQ and g,g = COI(Vfl(i‘k), ey an(jk))

1 1 1
Vi = §||93kH%< + §H’Ul~c + ngH
This function is nonincreasing;:
1 2 _
Viers < Vie = [eallmlic + ea o + 50| +esnll V(@07

P-t implies IVF(@)I* > v(f(@k) — ).

X.L.Yietal | CDC2020 | Convergence Analysis 7/13



Linear convergence to global optima

Theorem
If each f;(z) is smooth and f(z) satisfies P—t, there exists p € (0,1) such that

%Z;l |zix — Zxl® + (@) — f* = O(").

Proof sketch:
Combine the nonincreasing property of Vj,

1 2
Vir < Vi = [ealeelii + eof o + 5o+ eanl V1 (E017]
and P-t condition ||V f(zx)||? > v(f(z) — f*):
1 2
Vi1 < Vi — {ﬁ”%”%{ + C2H'Uk + BQ%HK + cavn(f(zx) — f*)}

S(A—c)Vi < < (1L—e)" V.

X.L.Yietal | CDC2020 | Convergence Analysis 8/13



Linear convergence to global optima

Theorem
If each f;(z) is smooth and f(z) satisfies P—t, there exists p € (0,1) such that

%Z;l |zix — Zxl® + (@) — f* = O(").

Proof sketch:
Combine the nonincreasing property of Vj,

1,2 _
Vir < Vi = [ealeelii + eof o + 5o+ eanl V1 (E017]
and P-t condition ||V f(zx)||? > v(f(z) — f*):
1 2 ) .
Vi1 < Vi — {ﬁ”%\l%{ + C2H'Uk + BQ%HK +cavn(f(zx) — f )}
<AQ—e)Ve < < (1—cg)f V.

Using %Z;l @i — Zkl|2 4 f(Z) — f* < ¢5Vi gives the result.
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Extension: sublinear convergence to stationary points

Without P-t condition, the nonincreasing property of V4 still holds, i.e.,
1 2 _
Vi < V= [ealleallie + ealfon + o]+ eonl VA1),

X.L.Yietal | CDC2020 | Convergence Analysis 9/13



Extension: sublinear convergence to stationary points

Without P-t condition, the nonincreasing property of V4 still holds, i.e.,
1 2 _
Vi < Vi = [aallenlic + eaffon + 50f| + eonl VA (@E0I1).

Sum over k=0,...,7 — 1 and rearrange terms:
T—1 1 2 _
Zk:o [01||33k||%< + C2Hvk + EQQHK + C3n||Vf(fﬂk)H2} <V —-Vr<W.
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Extension: sublinear convergence to stationary points

Without P-t condition, the nonincreasing property of V4 still holds, i.e.,
1 2 _
Vi < Vi = [aallenlic + eaffon + 50f| + eonl VA (@E0I1).
Sum over k=0,...,7 — 1 and rearrange terms:

ZT_l [c zx]|% + c Hv —l—i OH2 + e3n||Vf(Z )Hﬂ <Vo—-Vr <V
peo [CUITRIK Zkﬁng 3 k = Vo T = Vo.

Division by nT gives 1 x—~7-1 [1 1

" =2 NIy
=3 S =l + V@] = O()-
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1 2 _
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Corollary (without P—t condition)
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stationary point sublinearly:

2 (e ek - mlP+ [VA@IE ] = 0.

n

Consensus Optimization

Remark: guaranteed convergence rate also for nonconvex cost functions.
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Nonconvex distributed regularized logistic regression problem

Each component function:

mg

n  Apfa)?
filz) = - ;(yll log(1 + exp(—x " z)) + (1 — yi;) log(1 + exp(x " z1))) + ; W

Compared algorithms:

o Distributed primal—dual gradient descent algorithm (DPD-GDA) [Our paper]
e Distributed gradient descent algorithm (D-GDA) [Zeng & Yin, TSP, 2018]
o Distributed gradient tracking algorithm ( ) [Qu & Li, TCNS, 2018]
@ Distributed proximal primal-dual algorithm (Prox-PDA) [Hong et al, ICML, 2017]
o Distributed xFILTER algorithm (xFILTER) [Sun & Hong, TSP 2019]
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@ Our DPD-GDA gives the best performance in general.
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Conclusions

o Problem: mln f(z Zfz ), where each f; could be nonconvex
z€R

@ Assumptions: each f; is smooth, f satisfies P-t, and G is connected

P—t condition : ||V f(x)|* > v(f(z) — f*), Vo € RP

@ Method: primal-dual gradient descent algorithm (v is not used)

o Result:
o Linear convergence with relaxed assumptions

@ Sublinear convergence for nonconvex cost functions
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Conclusions

o Problem: mln f(z Zfz ), where each f; could be nonconvex
z€R

Assumptions: each f; is smooth, f satisfies P-t, and G is connected

P—t condition : ||V f(x)|* > v(f(z) — f*), Vo € RP

Method: primal-dual gradient descent algorithm (v is not used)

Result:
o Linear convergence with relaxed assumptions

@ Sublinear convergence for nonconvex cost functions

Extensions:

@ Stochastic gradient descent algorithm

@ Zeroth-order algorithm
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Thank you for your attention!
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