
Linear Convergence for Distributed Optimization Without
Strong Convexity

Xinlei Yi

Joint work with Shengjun Zhang, Tao Yang, Tianyou Chai, and Karl H. Johansson

December, 2020

School of Electrical Engineering and Computer Science
KTH Royal Institute of Technology

Stockholm, Sweden



Distributed optimization

A network of agents cooperatively solve a global
optimization problem, where

each agent i has a local private objective fi(x)

all agents collaborate together to find the
solution to minimize f(x) := 1

n

∑n
i=1 fi(x)

agents exchange information through the
underlying communication network G

min
x∈Rp

f(x) := 1
n

n∑
i=1

fi(x)

1.2. Information sharing in multi-agent systems 3

 1  2 

 3 4

(a)

v1 v2

v3v4

(b)

Figure 1.1: (a) An example of an undirected graph G. (b) An example of assigning a
direction to each edge of G.

𝑣𝑣2

𝑣𝑣1

(a)

𝑣𝑣1

𝑣𝑣2

(b)

Figure 1.2: Two agents have different communication ranges and are in different positions.

there are two ways to explain the interaction between these two agents. The first one is that
agent v1 could receive the information that broadcasted by agent v2 but opposite operation
does not hold. The second one is agent v2 could actively sense agent v1’s information, such
as position, but agent v1 cannot actively sense agent v2’s information. In graph theory, the
first explanation is described by there is a directed edge from agent v2 to agent v1 but the
edge with opposite direction does not exists, and the second explanation is described by
there is a directed edge from agent v1 to agent v2 but the edge with opposite direction does
not exists.

Another constraint is about the channel performance. Communication is done using
wireless radios in a shared channel. The performance of this channel is closely related
to quantization error, time delays, bandwidth constraint, data rate constraint, data packet
dropout, and noise. These considerations degrade the ability of agents to successfully
coordinate their actions, unless one increases the cost and complexity of the supporting
communication equipments.

The third constraint is that there is energy constraint for communication. Sensors

Distributed optimization summarizes many popular machine learning models,
e.g., deep learning and federated learning [Dean et al, NeurIPS, 2012]
Distributed algorithms outperform centralized algorithms in some applications,
e.g., training neural networks [Lian et al, NeurIPS, 2017]

X.L. Yi et al | CDC 2020 | Introduction and Problem Formulation 1/13



Distributed optimization

A network of agents cooperatively solve a global
optimization problem, where

each agent i has a local private objective fi(x)

all agents collaborate together to find the
solution to minimize f(x) := 1

n

∑n
i=1 fi(x)

agents exchange information through the
underlying communication network G

min
x∈Rp

f(x) := 1
n

n∑
i=1

fi(x)

1.2. Information sharing in multi-agent systems 3

 1  2 

 3 4

(a)

v1 v2

v3v4

(b)

Figure 1.1: (a) An example of an undirected graph G. (b) An example of assigning a
direction to each edge of G.

𝑣𝑣2

𝑣𝑣1

(a)

𝑣𝑣1

𝑣𝑣2

(b)

Figure 1.2: Two agents have different communication ranges and are in different positions.

there are two ways to explain the interaction between these two agents. The first one is that
agent v1 could receive the information that broadcasted by agent v2 but opposite operation
does not hold. The second one is agent v2 could actively sense agent v1’s information, such
as position, but agent v1 cannot actively sense agent v2’s information. In graph theory, the
first explanation is described by there is a directed edge from agent v2 to agent v1 but the
edge with opposite direction does not exists, and the second explanation is described by
there is a directed edge from agent v1 to agent v2 but the edge with opposite direction does
not exists.

Another constraint is about the channel performance. Communication is done using
wireless radios in a shared channel. The performance of this channel is closely related
to quantization error, time delays, bandwidth constraint, data rate constraint, data packet
dropout, and noise. These considerations degrade the ability of agents to successfully
coordinate their actions, unless one increases the cost and complexity of the supporting
communication equipments.

The third constraint is that there is energy constraint for communication. Sensors

Distributed optimization summarizes many popular machine learning models,
e.g., deep learning and federated learning [Dean et al, NeurIPS, 2012]
Distributed algorithms outperform centralized algorithms in some applications,
e.g., training neural networks [Lian et al, NeurIPS, 2017]

X.L. Yi et al | CDC 2020 | Introduction and Problem Formulation 1/13



Distributed optimization

A network of agents cooperatively solve a global
optimization problem, where

each agent i has a local private objective fi(x)

all agents collaborate together to find the
solution to minimize f(x) := 1

n

∑n
i=1 fi(x)

agents exchange information through the
underlying communication network G

min
x∈Rp

f(x) := 1
n

n∑
i=1

fi(x)

1.2. Information sharing in multi-agent systems 3

 1  2 

 3 4

(a)

v1 v2

v3v4

(b)

Figure 1.1: (a) An example of an undirected graph G. (b) An example of assigning a
direction to each edge of G.

𝑣𝑣2

𝑣𝑣1

(a)

𝑣𝑣1

𝑣𝑣2

(b)

Figure 1.2: Two agents have different communication ranges and are in different positions.

there are two ways to explain the interaction between these two agents. The first one is that
agent v1 could receive the information that broadcasted by agent v2 but opposite operation
does not hold. The second one is agent v2 could actively sense agent v1’s information, such
as position, but agent v1 cannot actively sense agent v2’s information. In graph theory, the
first explanation is described by there is a directed edge from agent v2 to agent v1 but the
edge with opposite direction does not exists, and the second explanation is described by
there is a directed edge from agent v1 to agent v2 but the edge with opposite direction does
not exists.

Another constraint is about the channel performance. Communication is done using
wireless radios in a shared channel. The performance of this channel is closely related
to quantization error, time delays, bandwidth constraint, data rate constraint, data packet
dropout, and noise. These considerations degrade the ability of agents to successfully
coordinate their actions, unless one increases the cost and complexity of the supporting
communication equipments.

The third constraint is that there is energy constraint for communication. Sensors

Distributed optimization summarizes many popular machine learning models,
e.g., deep learning and federated learning [Dean et al, NeurIPS, 2012]
Distributed algorithms outperform centralized algorithms in some applications,
e.g., training neural networks [Lian et al, NeurIPS, 2017]

X.L. Yi et al | CDC 2020 | Introduction and Problem Formulation 1/13



Distributed optimization

A network of agents cooperatively solve a global
optimization problem, where

each agent i has a local private objective fi(x)

all agents collaborate together to find the
solution to minimize f(x) := 1

n

∑n
i=1 fi(x)

agents exchange information through the
underlying communication network G

min
x∈Rp

f(x) := 1
n

n∑
i=1

fi(x)

1.2. Information sharing in multi-agent systems 3

 1  2 

 3 4

(a)

v1 v2

v3v4

(b)

Figure 1.1: (a) An example of an undirected graph G. (b) An example of assigning a
direction to each edge of G.

𝑣𝑣2

𝑣𝑣1

(a)

𝑣𝑣1

𝑣𝑣2

(b)

Figure 1.2: Two agents have different communication ranges and are in different positions.

there are two ways to explain the interaction between these two agents. The first one is that
agent v1 could receive the information that broadcasted by agent v2 but opposite operation
does not hold. The second one is agent v2 could actively sense agent v1’s information, such
as position, but agent v1 cannot actively sense agent v2’s information. In graph theory, the
first explanation is described by there is a directed edge from agent v2 to agent v1 but the
edge with opposite direction does not exists, and the second explanation is described by
there is a directed edge from agent v1 to agent v2 but the edge with opposite direction does
not exists.

Another constraint is about the channel performance. Communication is done using
wireless radios in a shared channel. The performance of this channel is closely related
to quantization error, time delays, bandwidth constraint, data rate constraint, data packet
dropout, and noise. These considerations degrade the ability of agents to successfully
coordinate their actions, unless one increases the cost and complexity of the supporting
communication equipments.

The third constraint is that there is energy constraint for communication. Sensors

Distributed optimization summarizes many popular machine learning models,
e.g., deep learning and federated learning [Dean et al, NeurIPS, 2012]
Distributed algorithms outperform centralized algorithms in some applications,
e.g., training neural networks [Lian et al, NeurIPS, 2017]

X.L. Yi et al | CDC 2020 | Introduction and Problem Formulation 1/13



Motivation

Existing algorithms
Continuous- and discrete-time distributed algorithms

Existing result
A standard assumption for proving exponential/linear convergence of existing
distributed algorithms is

strong convexity of the cost functions

Question
Could strong convexity be relaxed?
For example, quadratic functions may be not strongly convex.

Answer in our paper
Yes, it can be relaxed by the Polyak–Łojasiewicz condition.

X.L. Yi et al | CDC 2020 | Introduction and Problem Formulation 2/13



Motivation

Existing algorithms
Continuous- and discrete-time distributed algorithms

Existing result
A standard assumption for proving exponential/linear convergence of existing
distributed algorithms is

strong convexity of the cost functions

Question
Could strong convexity be relaxed?
For example, quadratic functions may be not strongly convex.

Answer in our paper
Yes, it can be relaxed by the Polyak–Łojasiewicz condition.

X.L. Yi et al | CDC 2020 | Introduction and Problem Formulation 2/13



Motivation

Existing algorithms
Continuous- and discrete-time distributed algorithms

Existing result
A standard assumption for proving exponential/linear convergence of existing
distributed algorithms is

strong convexity of the cost functions

Question
Could strong convexity be relaxed?
For example, quadratic functions may be not strongly convex.

Answer in our paper
Yes, it can be relaxed by the Polyak–Łojasiewicz condition.

X.L. Yi et al | CDC 2020 | Introduction and Problem Formulation 2/13



Motivation

Existing algorithms
Continuous- and discrete-time distributed algorithms

Existing result
A standard assumption for proving exponential/linear convergence of existing
distributed algorithms is

strong convexity of the cost functions

Question
Could strong convexity be relaxed?
For example, quadratic functions may be not strongly convex.

Answer in our paper
Yes, it can be relaxed by the Polyak–Łojasiewicz condition.

X.L. Yi et al | CDC 2020 | Introduction and Problem Formulation 2/13



Polyak–Łojasiewicz condition

Polyak–Łojasiewicz (P–Ł) condition
The function f(x) satisfies the P–Ł condition with constant ν > 0 if

‖∇f(x)‖2 ≥ ν(f(x)− f∗), ∀x ∈ Rp.

Examples: f(x) = ‖Ax‖2 and f(x) = x2 + 3 sin2(x).
P–Ł does not imply convexity.
P–Ł implies that every stationary point is a global minimizer.
Every strongly convex function satisfies P–Ł.
It is difficult to verify P–Ł in general.

One special case
If g : Rp → R is a strongly convex function and A ∈ Rp×p is a matrix, then f(x) = g(Ax)
satisfies the P–Ł condition.

X.L. Yi et al | CDC 2020 | Introduction and Problem Formulation 3/13



Polyak–Łojasiewicz condition

Polyak–Łojasiewicz (P–Ł) condition
The function f(x) satisfies the P–Ł condition with constant ν > 0 if

‖∇f(x)‖2 ≥ ν(f(x)− f∗), ∀x ∈ Rp.

Examples: f(x) = ‖Ax‖2 and f(x) = x2 + 3 sin2(x).

P–Ł does not imply convexity.
P–Ł implies that every stationary point is a global minimizer.
Every strongly convex function satisfies P–Ł.
It is difficult to verify P–Ł in general.

One special case
If g : Rp → R is a strongly convex function and A ∈ Rp×p is a matrix, then f(x) = g(Ax)
satisfies the P–Ł condition.

X.L. Yi et al | CDC 2020 | Introduction and Problem Formulation 3/13



Polyak–Łojasiewicz condition

Polyak–Łojasiewicz (P–Ł) condition
The function f(x) satisfies the P–Ł condition with constant ν > 0 if

‖∇f(x)‖2 ≥ ν(f(x)− f∗), ∀x ∈ Rp.

Examples: f(x) = ‖Ax‖2 and f(x) = x2 + 3 sin2(x).
P–Ł does not imply convexity.
P–Ł implies that every stationary point is a global minimizer.
Every strongly convex function satisfies P–Ł.
It is difficult to verify P–Ł in general.

One special case
If g : Rp → R is a strongly convex function and A ∈ Rp×p is a matrix, then f(x) = g(Ax)
satisfies the P–Ł condition.

X.L. Yi et al | CDC 2020 | Introduction and Problem Formulation 3/13



Polyak–Łojasiewicz condition

Polyak–Łojasiewicz (P–Ł) condition
The function f(x) satisfies the P–Ł condition with constant ν > 0 if

‖∇f(x)‖2 ≥ ν(f(x)− f∗), ∀x ∈ Rp.

Examples: f(x) = ‖Ax‖2 and f(x) = x2 + 3 sin2(x).
P–Ł does not imply convexity.
P–Ł implies that every stationary point is a global minimizer.
Every strongly convex function satisfies P–Ł.
It is difficult to verify P–Ł in general.

One special case
If g : Rp → R is a strongly convex function and A ∈ Rp×p is a matrix, then f(x) = g(Ax)
satisfies the P–Ł condition.

X.L. Yi et al | CDC 2020 | Introduction and Problem Formulation 3/13



Derivation of primal–dual gradient descent algorithm

min
x∈Rp

f(x) := 1
n

n∑
i=1

fi(x)

is equivalent to
min

x∈Rnp
f̃(x) :=

n∑
i=1

fi(xi)

subject to L1/2x = 0np,

where x = col(x1, . . . , xn) and L = L⊗ Ip with L being the Laplacian.
Associated augmented Lagrangian:

A(x,u) = f̃(x) + α

2 x>Lx + βu>L1/2x,

where u ∈ Rnp is the dual variable, α, β > 0 are parameters.
Minimize A(x,u) with a primal–dual algorithm:

xk+1 =xk − η
∂A(xk,uk)

∂xk
= xk − η(αLxk + βL1/2uk +∇f̃(xk)),

uk+1 =uk + η
∂A(xk,uk)

∂uk
= uk + ηβL1/2xk,

where η > 0 is a fixed stepsize.
With vk = L1/2uk, this algorithm can be rewritten as

xk+1 =xk − η(αLxk + βvk +∇f̃(xk)),
vk+1 =vk + ηβLxk.

X.L. Yi et al | CDC 2020 | Distributed Primal–Dual Gradient Descent Algorithm 4/13



Derivation of primal–dual gradient descent algorithm

min
x∈Rp

f(x) := 1
n

n∑
i=1

fi(x) is equivalent to
min

x∈Rnp
f̃(x) :=

n∑
i=1

fi(xi)

subject to L1/2x = 0np,

where x = col(x1, . . . , xn) and L = L⊗ Ip with L being the Laplacian.

Associated augmented Lagrangian:
A(x,u) = f̃(x) + α

2 x>Lx + βu>L1/2x,

where u ∈ Rnp is the dual variable, α, β > 0 are parameters.
Minimize A(x,u) with a primal–dual algorithm:

xk+1 =xk − η
∂A(xk,uk)

∂xk
= xk − η(αLxk + βL1/2uk +∇f̃(xk)),

uk+1 =uk + η
∂A(xk,uk)

∂uk
= uk + ηβL1/2xk,

where η > 0 is a fixed stepsize.
With vk = L1/2uk, this algorithm can be rewritten as

xk+1 =xk − η(αLxk + βvk +∇f̃(xk)),
vk+1 =vk + ηβLxk.

X.L. Yi et al | CDC 2020 | Distributed Primal–Dual Gradient Descent Algorithm 4/13



Derivation of primal–dual gradient descent algorithm

min
x∈Rp

f(x) := 1
n

n∑
i=1

fi(x) is equivalent to
min

x∈Rnp
f̃(x) :=

n∑
i=1

fi(xi)

subject to L1/2x = 0np,

where x = col(x1, . . . , xn) and L = L⊗ Ip with L being the Laplacian.
Associated augmented Lagrangian:

A(x,u) = f̃(x) + α

2 x>Lx + βu>L1/2x,

where u ∈ Rnp is the dual variable, α, β > 0 are parameters.

Minimize A(x,u) with a primal–dual algorithm:
xk+1 =xk − η

∂A(xk,uk)
∂xk

= xk − η(αLxk + βL1/2uk +∇f̃(xk)),

uk+1 =uk + η
∂A(xk,uk)

∂uk
= uk + ηβL1/2xk,

where η > 0 is a fixed stepsize.
With vk = L1/2uk, this algorithm can be rewritten as

xk+1 =xk − η(αLxk + βvk +∇f̃(xk)),
vk+1 =vk + ηβLxk.

X.L. Yi et al | CDC 2020 | Distributed Primal–Dual Gradient Descent Algorithm 4/13



Derivation of primal–dual gradient descent algorithm

min
x∈Rp

f(x) := 1
n

n∑
i=1

fi(x) is equivalent to
min

x∈Rnp
f̃(x) :=

n∑
i=1

fi(xi)

subject to L1/2x = 0np,

where x = col(x1, . . . , xn) and L = L⊗ Ip with L being the Laplacian.
Associated augmented Lagrangian:

A(x,u) = f̃(x) + α

2 x>Lx + βu>L1/2x,

where u ∈ Rnp is the dual variable, α, β > 0 are parameters.
Minimize A(x,u) with a primal–dual algorithm:

xk+1 =xk − η
∂A(xk,uk)

∂xk
= xk − η(αLxk + βL1/2uk +∇f̃(xk)),

uk+1 =uk + η
∂A(xk,uk)

∂uk
= uk + ηβL1/2xk,

where η > 0 is a fixed stepsize.

With vk = L1/2uk, this algorithm can be rewritten as
xk+1 =xk − η(αLxk + βvk +∇f̃(xk)),
vk+1 =vk + ηβLxk.

X.L. Yi et al | CDC 2020 | Distributed Primal–Dual Gradient Descent Algorithm 4/13



Derivation of primal–dual gradient descent algorithm

min
x∈Rp

f(x) := 1
n

n∑
i=1

fi(x) is equivalent to
min

x∈Rnp
f̃(x) :=

n∑
i=1

fi(xi)

subject to L1/2x = 0np,

where x = col(x1, . . . , xn) and L = L⊗ Ip with L being the Laplacian.
Associated augmented Lagrangian:

A(x,u) = f̃(x) + α

2 x>Lx + βu>L1/2x,

where u ∈ Rnp is the dual variable, α, β > 0 are parameters.
Minimize A(x,u) with a primal–dual algorithm:

xk+1 =xk − η
∂A(xk,uk)

∂xk
= xk − η(αLxk + βL1/2uk +∇f̃(xk)),

uk+1 =uk + η
∂A(xk,uk)

∂uk
= uk + ηβL1/2xk,

where η > 0 is a fixed stepsize.
With vk = L1/2uk, this algorithm can be rewritten as

xk+1 =xk − η(αLxk + βvk +∇f̃(xk)),
vk+1 =vk + ηβLxk.

X.L. Yi et al | CDC 2020 | Distributed Primal–Dual Gradient Descent Algorithm 4/13



Distributed primal–dual gradient descent algorithm

xk+1 =xk − η(αLxk + βvk +∇f̃(xk)),
vk+1 =vk + ηβLxk.

Distributed Primal–Dual Gradient Descent Algorithm
xi,k+1 = xi,k − η

(
α
∑n

j=1
Lijxj,k + βvi,k +∇fi(xi,k)

)
,

vi,k+1 = vi,k + ηβ
∑n

j=1
Lijxj,k.

This algorithm is single-loop and communicates only one variable.

X.L. Yi et al | CDC 2020 | Distributed Primal–Dual Gradient Descent Algorithm 5/13



Distributed primal–dual gradient descent algorithm

xk+1 =xk − η(αLxk + βvk +∇f̃(xk)),
vk+1 =vk + ηβLxk.

Distributed Primal–Dual Gradient Descent Algorithm
xi,k+1 = xi,k − η

(
α
∑n

j=1
Lijxj,k + βvi,k +∇fi(xi,k)

)
,

vi,k+1 = vi,k + ηβ
∑n

j=1
Lijxj,k.

This algorithm is single-loop and communicates only one variable.

X.L. Yi et al | CDC 2020 | Distributed Primal–Dual Gradient Descent Algorithm 5/13



Linear convergence to global optima
Distributed Primal–Dual Gradient Descent Algorithm

xi,k+1 = xi,k − η
(
α
∑n

j=1
Lijxj,k + βvi,k +∇fi(xi,k)

)
,

vi,k+1 = vi,k + ηβ
∑n

j=1
Lijxj,k.

Theorem
If each fi(x) is smooth (∇fi(x) is Lipschitz continuous) and f(x) satisfies P–Ł, then
the primal–dual gradient descent algorithm linearly converges to a global optimum:
there exists ρ ∈ (0, 1) such that

1
n

∑n

i=1
‖xi,k − x̄k‖2︸ ︷︷ ︸

Consensus

+ f(x̄k)− f∗︸ ︷︷ ︸
Optimization

= O(ρk).

Remark
Linear convergence is achieved without strong convexity, even without convexity.
Parameters α, β, η do not have to depend on ν.

X.L. Yi et al | CDC 2020 | Convergence Analysis 6/13



Linear convergence to global optima
Distributed Primal–Dual Gradient Descent Algorithm

xi,k+1 = xi,k − η
(
α
∑n

j=1
Lijxj,k + βvi,k +∇fi(xi,k)

)
,

vi,k+1 = vi,k + ηβ
∑n

j=1
Lijxj,k.

Theorem
If each fi(x) is smooth (∇fi(x) is Lipschitz continuous) and f(x) satisfies P–Ł, then
the primal–dual gradient descent algorithm linearly converges to a global optimum:
there exists ρ ∈ (0, 1) such that

1
n

∑n

i=1
‖xi,k − x̄k‖2︸ ︷︷ ︸

Consensus

+ f(x̄k)− f∗︸ ︷︷ ︸
Optimization

= O(ρk).

Remark
Linear convergence is achieved without strong convexity, even without convexity.
Parameters α, β, η do not have to depend on ν.

X.L. Yi et al | CDC 2020 | Convergence Analysis 6/13



Linear convergence to global optima
P–Ł condition: ‖∇f(x)‖2 ≥ ν(f(x)− f∗), ∀x ∈ Rp.
Theorem
If each fi(x) is smooth and f(x) satisfies P–Ł, there exists ρ ∈ (0, 1) such that

1
n

∑n

i=1
‖xi,k − x̄k‖2 + f(x̄k)− f∗ = O(ρk).

Proof sketch:
Consider the nonnegative potential function:

Vk = 1
2‖xk‖2

K + 1
2

∥∥∥vk + 1
β

g0
k

∥∥∥2

Q+α
βK

+ x>k K
(

vk + 1
β

g0
k

)
+ n(f(x̄k)− f∗),

where ‖xk‖2
K =

∑n
i=1 ‖xi,k − x̄k‖2 and g0

k = col(∇f1(x̄k), . . . ,∇fn(x̄k)).

This function is nonincreasing:
Vk+1 ≤ Vk −

[
c1‖xk‖2

K + c2

∥∥∥vk + 1
β

g0
k

∥∥∥2

K
+ c3n‖∇f(x̄k)‖2

]
.

P–Ł implies ‖∇f(x̄k)‖2 ≥ ν(f(x̄k)− f∗).

X.L. Yi et al | CDC 2020 | Convergence Analysis 7/13



Linear convergence to global optima
P–Ł condition: ‖∇f(x)‖2 ≥ ν(f(x)− f∗), ∀x ∈ Rp.
Theorem
If each fi(x) is smooth and f(x) satisfies P–Ł, there exists ρ ∈ (0, 1) such that

1
n

∑n

i=1
‖xi,k − x̄k‖2 + f(x̄k)− f∗ = O(ρk).

Proof sketch:
Consider the nonnegative potential function:

Vk = 1
2‖xk‖2

K + 1
2

∥∥∥vk + 1
β

g0
k

∥∥∥2

Q+α
βK

+ x>k K
(

vk + 1
β

g0
k

)
+ n(f(x̄k)− f∗),

where ‖xk‖2
K =

∑n
i=1 ‖xi,k − x̄k‖2 and g0

k = col(∇f1(x̄k), . . . ,∇fn(x̄k)).

This function is nonincreasing:
Vk+1 ≤ Vk −

[
c1‖xk‖2

K + c2

∥∥∥vk + 1
β

g0
k

∥∥∥2

K
+ c3n‖∇f(x̄k)‖2

]
.

P–Ł implies ‖∇f(x̄k)‖2 ≥ ν(f(x̄k)− f∗).

X.L. Yi et al | CDC 2020 | Convergence Analysis 7/13



Linear convergence to global optima
P–Ł condition: ‖∇f(x)‖2 ≥ ν(f(x)− f∗), ∀x ∈ Rp.
Theorem
If each fi(x) is smooth and f(x) satisfies P–Ł, there exists ρ ∈ (0, 1) such that

1
n

∑n

i=1
‖xi,k − x̄k‖2 + f(x̄k)− f∗ = O(ρk).

Proof sketch:
Consider the nonnegative potential function:

Vk = 1
2‖xk‖2

K + 1
2

∥∥∥vk + 1
β

g0
k

∥∥∥2

Q+α
βK

+ x>k K
(

vk + 1
β

g0
k

)
+ n(f(x̄k)− f∗),

where ‖xk‖2
K =

∑n
i=1 ‖xi,k − x̄k‖2 and g0

k = col(∇f1(x̄k), . . . ,∇fn(x̄k)).

This function is nonincreasing:
Vk+1 ≤ Vk −

[
c1‖xk‖2

K + c2

∥∥∥vk + 1
β

g0
k

∥∥∥2

K
+ c3n‖∇f(x̄k)‖2

]
.

P–Ł implies ‖∇f(x̄k)‖2 ≥ ν(f(x̄k)− f∗).

X.L. Yi et al | CDC 2020 | Convergence Analysis 7/13



Linear convergence to global optima

Theorem
If each fi(x) is smooth and f(x) satisfies P–Ł, there exists ρ ∈ (0, 1) such that

1
n

∑n

i=1
‖xi,k − x̄k‖2 + f(x̄k)− f∗ = O(ρk).

Proof sketch:
Combine the nonincreasing property of Vk

Vk+1 ≤ Vk −
[
c1‖xk‖2

K + c2

∥∥∥vk + 1
β

g0
k

∥∥∥2

K
+ c3n‖∇f(x̄k)‖2

]
and P–Ł condition ‖∇f(x̄k)‖2 ≥ ν(f(x̄k)− f∗):

Vk+1 ≤ Vk −
[
c1‖xk‖2

K + c2

∥∥∥vk + 1
β

g0
k

∥∥∥2

K
+ c3νn(f(x̄k)− f∗)

]
≤ (1− c4)Vk ≤ · · · ≤ (1− c4)k+1V0.

Using 1
n

∑n

i=1
‖xi,k − x̄k‖2 + f(x̄k)− f∗ ≤ c5Vk gives the result.

X.L. Yi et al | CDC 2020 | Convergence Analysis 8/13



Linear convergence to global optima

Theorem
If each fi(x) is smooth and f(x) satisfies P–Ł, there exists ρ ∈ (0, 1) such that

1
n

∑n

i=1
‖xi,k − x̄k‖2 + f(x̄k)− f∗ = O(ρk).

Proof sketch:
Combine the nonincreasing property of Vk

Vk+1 ≤ Vk −
[
c1‖xk‖2

K + c2

∥∥∥vk + 1
β

g0
k

∥∥∥2

K
+ c3n‖∇f(x̄k)‖2

]
and P–Ł condition ‖∇f(x̄k)‖2 ≥ ν(f(x̄k)− f∗):

Vk+1 ≤ Vk −
[
c1‖xk‖2

K + c2

∥∥∥vk + 1
β

g0
k

∥∥∥2

K
+ c3νn(f(x̄k)− f∗)

]
≤ (1− c4)Vk ≤ · · · ≤ (1− c4)k+1V0.

Using 1
n

∑n

i=1
‖xi,k − x̄k‖2 + f(x̄k)− f∗ ≤ c5Vk gives the result.

X.L. Yi et al | CDC 2020 | Convergence Analysis 8/13



Extension: sublinear convergence to stationary points
Without P–Ł condition, the nonincreasing property of Vk still holds, i.e.,

Vk+1 ≤ Vk −
[
c1‖xk‖2

K + c2

∥∥∥vk + 1
β

g0
k

∥∥∥2

K
+ c3n‖∇f(x̄k)‖2

]
.

Sum over k = 0, . . . , T − 1 and rearrange terms:∑T−1

k=0

[
c1‖xk‖2

K + c2

∥∥∥vk + 1
β

g0
k

∥∥∥2

K
+ c3n‖∇f(x̄k)‖2

]
≤ V0 − VT ≤ V0.

Division by nT gives 1
T

∑T−1

k=0

[ 1
n

∑n

i=1
‖xi,k − x̄k‖2 + ‖∇f(x̄k)‖2

]
= O( 1

T
).

Corollary (without P–Ł condition)
If each fi(x) is smooth, the primal–dual gradient descent algorithm converges to a
stationary point sublinearly:

1
T

∑T−1

k=0

[ 1
n

∑n

i=1
‖xi,k − x̄k‖2︸ ︷︷ ︸

Consensus

+ ‖∇f(x̄k)‖2︸ ︷︷ ︸
Optimization

]
= O( 1

T
).

Remark: guaranteed convergence rate also for nonconvex cost functions.

X.L. Yi et al | CDC 2020 | Convergence Analysis 9/13



Extension: sublinear convergence to stationary points
Without P–Ł condition, the nonincreasing property of Vk still holds, i.e.,

Vk+1 ≤ Vk −
[
c1‖xk‖2

K + c2

∥∥∥vk + 1
β

g0
k

∥∥∥2

K
+ c3n‖∇f(x̄k)‖2

]
.

Sum over k = 0, . . . , T − 1 and rearrange terms:∑T−1

k=0

[
c1‖xk‖2

K + c2

∥∥∥vk + 1
β

g0
k

∥∥∥2

K
+ c3n‖∇f(x̄k)‖2

]
≤ V0 − VT ≤ V0.

Division by nT gives 1
T

∑T−1

k=0

[ 1
n

∑n

i=1
‖xi,k − x̄k‖2 + ‖∇f(x̄k)‖2

]
= O( 1

T
).

Corollary (without P–Ł condition)
If each fi(x) is smooth, the primal–dual gradient descent algorithm converges to a
stationary point sublinearly:

1
T

∑T−1

k=0

[ 1
n

∑n

i=1
‖xi,k − x̄k‖2︸ ︷︷ ︸

Consensus

+ ‖∇f(x̄k)‖2︸ ︷︷ ︸
Optimization

]
= O( 1

T
).

Remark: guaranteed convergence rate also for nonconvex cost functions.

X.L. Yi et al | CDC 2020 | Convergence Analysis 9/13



Extension: sublinear convergence to stationary points
Without P–Ł condition, the nonincreasing property of Vk still holds, i.e.,

Vk+1 ≤ Vk −
[
c1‖xk‖2

K + c2

∥∥∥vk + 1
β

g0
k

∥∥∥2

K
+ c3n‖∇f(x̄k)‖2

]
.

Sum over k = 0, . . . , T − 1 and rearrange terms:∑T−1

k=0

[
c1‖xk‖2

K + c2

∥∥∥vk + 1
β

g0
k

∥∥∥2

K
+ c3n‖∇f(x̄k)‖2

]
≤ V0 − VT ≤ V0.

Division by nT gives 1
T

∑T−1

k=0

[ 1
n

∑n

i=1
‖xi,k − x̄k‖2 + ‖∇f(x̄k)‖2

]
= O( 1

T
).

Corollary (without P–Ł condition)
If each fi(x) is smooth, the primal–dual gradient descent algorithm converges to a
stationary point sublinearly:

1
T

∑T−1

k=0

[ 1
n

∑n

i=1
‖xi,k − x̄k‖2︸ ︷︷ ︸

Consensus

+ ‖∇f(x̄k)‖2︸ ︷︷ ︸
Optimization

]
= O( 1

T
).

Remark: guaranteed convergence rate also for nonconvex cost functions.

X.L. Yi et al | CDC 2020 | Convergence Analysis 9/13



Extension: sublinear convergence to stationary points
Without P–Ł condition, the nonincreasing property of Vk still holds, i.e.,

Vk+1 ≤ Vk −
[
c1‖xk‖2

K + c2

∥∥∥vk + 1
β

g0
k

∥∥∥2

K
+ c3n‖∇f(x̄k)‖2

]
.

Sum over k = 0, . . . , T − 1 and rearrange terms:∑T−1

k=0

[
c1‖xk‖2

K + c2

∥∥∥vk + 1
β

g0
k

∥∥∥2

K
+ c3n‖∇f(x̄k)‖2

]
≤ V0 − VT ≤ V0.

Division by nT gives 1
T

∑T−1

k=0

[ 1
n

∑n

i=1
‖xi,k − x̄k‖2 + ‖∇f(x̄k)‖2

]
= O( 1

T
).

Corollary (without P–Ł condition)
If each fi(x) is smooth, the primal–dual gradient descent algorithm converges to a
stationary point sublinearly:

1
T

∑T−1

k=0

[ 1
n

∑n

i=1
‖xi,k − x̄k‖2︸ ︷︷ ︸

Consensus

+ ‖∇f(x̄k)‖2︸ ︷︷ ︸
Optimization

]
= O( 1

T
).

Remark: guaranteed convergence rate also for nonconvex cost functions.

X.L. Yi et al | CDC 2020 | Convergence Analysis 9/13



Extension: sublinear convergence to stationary points
Without P–Ł condition, the nonincreasing property of Vk still holds, i.e.,

Vk+1 ≤ Vk −
[
c1‖xk‖2

K + c2

∥∥∥vk + 1
β

g0
k

∥∥∥2

K
+ c3n‖∇f(x̄k)‖2

]
.

Sum over k = 0, . . . , T − 1 and rearrange terms:∑T−1

k=0

[
c1‖xk‖2

K + c2

∥∥∥vk + 1
β

g0
k

∥∥∥2

K
+ c3n‖∇f(x̄k)‖2

]
≤ V0 − VT ≤ V0.

Division by nT gives 1
T

∑T−1

k=0

[ 1
n

∑n

i=1
‖xi,k − x̄k‖2 + ‖∇f(x̄k)‖2

]
= O( 1

T
).

Corollary (without P–Ł condition)
If each fi(x) is smooth, the primal–dual gradient descent algorithm converges to a
stationary point sublinearly:

1
T

∑T−1

k=0

[ 1
n

∑n

i=1
‖xi,k − x̄k‖2︸ ︷︷ ︸

Consensus

+ ‖∇f(x̄k)‖2︸ ︷︷ ︸
Optimization

]
= O( 1

T
).

Remark: guaranteed convergence rate also for nonconvex cost functions.
X.L. Yi et al | CDC 2020 | Convergence Analysis 9/13



Nonconvex distributed regularized logistic regression problem

Each component function:

fi(x) = n

m

mi∑
l=1

(yil log(1 + exp(−x>zil)) + (1− yil) log(1 + exp(x>zil))) +
p∑

s=1

λµ[x]2s
1 + µ[x]2s

.

Compared algorithms:
Distributed primal–dual gradient descent algorithm (DPD-GDA) [Our paper]
Distributed gradient descent algorithm (D-GDA) [Zeng & Yin, TSP, 2018]
Distributed gradient tracking algorithm (D-GTA) [Qu & Li, TCNS, 2018]
Distributed proximal primal–dual algorithm (Prox-PDA) [Hong et al, ICML, 2017]
Distributed xFILTER algorithm (xFILTER) [Sun & Hong, TSP 2019]

X.L. Yi et al | CDC 2020 | Simulations 10/13



Nonconvex distributed regularized logistic regression problem

0 100 200 300 400 500 600 700 800 900 1000
10-35

10-30

10-25

10-20

10-15

10-10

10-5

100

 DPD-GDA
 D-GDA
 D-GTA
 Prox-GPDA
xFILTER

Our DPD-GDA gives the best performance in general.
X.L. Yi et al | CDC 2020 | Simulations 11/13



Conclusions
Problem: min

x∈Rp
f(x) := 1

n

n∑
i=1

fi(x), where each fi could be nonconvex

Assumptions: each fi is smooth, f satisfies P–Ł, and G is connected

P–Ł condition : ‖∇f(x)‖2 ≥ ν(f(x)− f∗), ∀x ∈ Rp

Method: primal–dual gradient descent algorithm (ν is not used)

Result:
Linear convergence with relaxed assumptions
Sublinear convergence for nonconvex cost functions

Extensions:
Stochastic gradient descent algorithm
Zeroth-order algorithm

X.L. Yi et al | CDC 2020 | Conclusions 12/13



Conclusions
Problem: min

x∈Rp
f(x) := 1

n

n∑
i=1

fi(x), where each fi could be nonconvex

Assumptions: each fi is smooth, f satisfies P–Ł, and G is connected

P–Ł condition : ‖∇f(x)‖2 ≥ ν(f(x)− f∗), ∀x ∈ Rp

Method: primal–dual gradient descent algorithm (ν is not used)

Result:
Linear convergence with relaxed assumptions
Sublinear convergence for nonconvex cost functions

Extensions:
Stochastic gradient descent algorithm
Zeroth-order algorithm

X.L. Yi et al | CDC 2020 | Conclusions 12/13



Thank you for your attention!

X.L. Yi et al | CDC 2020 | 13/13


	Introduction and Problem Formulation
	Distributed Primal–Dual Gradient Descent Algorithm
	Convergence Analysis
	Simulations
	Conclusions
	

